

Contents of my talk

- The evolution of mobile security: 1G, 2G, 3G, 4G
- What is 5G anyway?
- New security improvements in 5G
- New areas of risk
- Work in progress

0

Cryptography in mobile phone networks

GSM security architecture

GSM security architecture

Block ciphers and stream ciphers

C1 Unrestricted 7 26 June 2018

The SIM

A miniature "hardware security module"

 Well made SIMs, with strong algorithms, remain highly resistant to attack

Some limitations of GSM security

- The goals of GSM security
- Key length
- One-way authentication
- Weak ("export") crypto algorithms, initially

One-way authentication

GSM algorithms

- Encryption algorithm must be standardised operators can't do their own thing
- Various algorithms: A5/0 (no encryption), A5/1, A5/2, A5/3, ...
 - Always stream ciphers

11

Encrypt with A5/1

Authentication and key agreement algorithm need not be standardised

A5/1 attacks

- Several academic attacks from 1994 onwards
 - Guess-and-determine attacks
 - Statistical attacks
 - Algebraic attacks
- Time-memory-data trade-off attacks from 1995 onwards
- There's also A5/2
 - For when A5/1 is too strong(!)

A protocol problem

The Barkan-Biham-Keller attack — eavesdropping

The Barkan-Biham-Keller attack

- Exploits weak encryption algorithms
- Exploits ability to manipulate signalling ...
 - So let's add that to our list of GSM security limitations

0

3G, 4G

3G security architecture

Barkan-Biham-Keller and 3G

Defining – and deploying – new GSM algorithms

New, strong, public GSM algorithm

So now we can replace A5/1 with A5/3 ...

GSM encryption algorithm status

Algorithm	Status
A5/2	Abandoned
A5/1	Common - sometimes with countermeasures
A5/3	Growing - now in all Vodafone markets
A5/4	Testing

Radio interface algorithms in 3G

3G

- UEA1, UIA1 (already mentioned)
- UEA2, UIA2
 - Based on a stream cipher called SNOW 3G,
 developed from SNOW 2.0

Both mandatory from day one

O

Authentication and key agreement algorithms

Authentication and key agreement algorithms

Operators can choose their own ... but:

• COMP128

COMP128-2,
 COMP128-3

MILENAGE

Vodafone dual algorithm

O

4G

Evolution of security

2 G	3 G	4G
Key length	Increased 128 bits	
Oneway authentication	Mutual authentication, tampe proofsignalling	Proveswhichnetwork
Authentication and key agreement algorithms	Much better example algorithm	
Encryption algorithms	Full strength public algorithm	S
Same cipher key, whatev	Different cipherey depending on choice of algorithm	

C1 Unrestricted 28 26 June 2018

Radio interface algorithms in 3G / 4G

3**G**

UEA1, UIA1 (already mentioned)

UEA2, UIA2

 Based on a stream cipher called SNOW 3G,
 developed from SNOW 2.0 Both mandatory from day one

4G

EEA1, EIA1

Identical to UEA2 and UIA2

- EEA2, EIA2
 - Standard constructions based on AES
- EEA3, EIA3
 - China specials!

Both mandatory from day one

SIM evolution

Embedded SIM

Image from ETSI slides by Dr Klaus Vedder, G&D

C1 Unrestricted 31 26 June 2018

Authentication and key agreement algorithms (reprise)

- COMP128
- COMP128-2, COMP128-3
- MILENAGE
- TUAK

Integrated SIM

Physically separate silicon within chip

(not "Soft SIM")

5G is a family of technologies ...

4G Evolution

- GigabitSpeeds
- Low latency radio
- Massive IoT

• New spectrum

5G New

- Very high bandwidths
- Even lower latency radio
- Ultra reliable

Architectural Evolution

- Network Virtualisation
- Mobile Edge Computing
- Network Slicing

... and a family of architectures

Low Power, Wide Area IoT service

Deep Penetration

Mass Deployment

Low Bandwidth

Device Cost

5Groaming fraudprotection

Roaming fraud protection

C1 Unrestricted 39 26 June 2018

5G

privacy enhancement

Improved privacy

IMSI catcher / Stingray IMSI sniffer

IMSI SUPI privacy

5G

user plane integrity

Block ciphers and stream ciphers

C1 Unrestricted 45 26 June 2018

Traffic = mobile voice

User plane integrity protection

Visited network

INTEGRITY PROTECT
AND ENCRYPT TRAFFIC
ENCRYPT & INTEGRITY

PROTECT SIGNALLING

C1 Unrestricted 47 26 June 2018

0

loT communication security

The attack surface

End to end security

... if your battery can handle it

BEST: battery efficient security for very low throughput Machine Type Communication devices

BEST: battery efficient security for very low throughput Machine Type Communication devices

Work in progress

So 4G security is very good ... but what if the secret isn't secret?

How can the long term secret key leak?

Creating shared session keys

LTKUP: Long Term Key Update

Quantum

Performance constraints on security

- Call set-up time matters to customers
 - Establishing a new key at the start of each call would take noticeably longer
 - So does that mean we can't do it?
- Fast handover between cells is important for some services
 - So pass session key from old cell to new cell, rather than establishing a new one?
- Some devices need to run on batteries for years
 - So do we need to keep security protocol transmissions to a minimum?
- Some services need very high availability
 - So we mustn't risk false positives when policing network access?

Handle with care

Service based architecture

Edge Computing

Final remarks

Security evolution

Thank you

C1 Unrestricted 66 26 June 2018